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Abstract

In this paper, the effects of surface radiation and inclination angle on heat transfer and flow structures in an inclined rectangular enclosure
have been studied numerically. The governing differential equations were solved by a finite volume method. The SIMPLER algorithm was used
for the velocity-pressure coupling, and the view factors were determined by a boundary element approximation and a Monte Carlo method. The
vertical walls of the enclosure are heated with uniform different temperatures and the others are adiabatic. The enclosure is inclined and contains
a centred inner body, for which the effects of thermal conductivity on heat transfer and air flow were analysed. It was found that the increase of
the inclination angle reduces considerably the total heat transfer in the cavity, the effect of the inner body thermal conductivity kib depends on the
inclination angle φ, and the inner body reduces the heat transfer in the cavity especially in the presence of radiation exchange.
 2005 Elsevier SAS. All rights reserved.
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1. Introduction

Natural convection in a partitioned cavity has been exten-
sively studied using numerical simulations and experiments be-
cause of its interest and importance in industrial applications
[1–7]. Some applications are solar collectors, fire research,
electronic cooling, aeronautics, chemical apparatus, building
construction, nuclear engineering, etc.

Natural convection in an inclined rectangular enclosure has
also attracted a lot of attention. In their investigation, Ramos
et al. [8] analysed the steady-state flow in a square two-
dimensional thermosyphon. They studied the effect of the tem-
perature differences and inclination angles on the flow patterns.
They demonstrated the existence of multiple solutions, and
found recirculating flow under particular conditions. Kimura
et al. [9] investigated both experimentally and numerically the
natural convection heat transfer in a rectangular inclined cavity
with a centred conducting body. They have varied parametri-
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cally the thermal conductivity ratio Rk , and found that the in-
ner body with a large thermal conductivity enhances the heat
transfer in the enclosure at large inclination angles, while it
suppresses the heat transfer for small inclination angles of the
enclosure.

The first numerical study of the coupled heat transfer prob-
lem involving both convection and radiation in a rectangular
cavity seems to be that of Larson and Viskanta [10]. They found
that radiation heats up the cavity surface and the gas body very
quickly and thus considerably modifies the flow pattern and the
corresponding convection process. Later, Lauriat [11,12] used
the P − 1 differential approximation to represent radiative heat
transfer in narrow vertical cavities. Yücel et al. [13] used the
discrete ordinates method to study combined natural convec-
tion and radiation heat transfer from a scattering medium in a
square enclosure. Since, the interaction between natural con-
vection and radiation with or without participating media in
the case of an undivided cavity has been studied by many re-
searchers [14–18]. These studies are accomplished by different
methods, but only restricted to 2D geometries. Lately, Colomer
et al. [19], have analysed, in a three-dimensional, differentially
heated cavity, the combined natural convection-radiation by us-



554 H. Bouali et al. / International Journal of Thermal Sciences 45 (2006) 553–566
Nomenclature

A cavity aspect ratio, A = L/b

A∗ body aspect ratio, Li/bi

Ai radiative surface number i

b enclosure width . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
bi width of the inner body . . . . . . . . . . . . . . . . . . . . . m
Fi−j view factor between Ai and Aj

g gravity acceleration . . . . . . . . . . . . . . . . . . . . . m·s−2

L enclosure length . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
Li length of the inner body . . . . . . . . . . . . . . . . . . . . . m
k thermal conductivity . . . . . . . . . . . . . . W·m−1·K−1

N total number of radiative surfaces
Nr radiation number, σT 4

h /(kf �T/b)

Nuw average Nusselt number
Nu(Y ) local Nusselt number along the Y -axis
p pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pa
P dimensionless pressure, (p + ρogy)L2/ρoα

Pr Prandtl number, ν/α

qw heat flux at the isothermal walls . . . . . . . . . W·m−2

qr net radiative flux density . . . . . . . . . . . . . . . W·m−2

Qr dimensionless net radiative flux density, qr/σT 4
h

Ra Rayleigh number, gβ(Th − Tc)b
3/να

Ri dimensionless radiosity of surface Ai

Rk thermal conductivity ratio, kib/kf

T temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
To average temperature, (Th + Tc)/2 . . . . . . . . . . . . K
u, v velocity components . . . . . . . . . . . . . . . . . . . . m·s−1

U , V dimensionless velocity components,
(U = ub/α, V = vb/α)

x, y Cartesian coordinates . . . . . . . . . . . . . . . . . . . . . . . m
X, Y dimensionless Cartesian coordinates,

(X = x/b, Y = y/b)

Greek symbols

α thermal diffusivity of the fluid . . . . . . . . . . m2·s−1

β volumetric expansion coefficient . . . . . . . . . . . K−1

φ inclination angle . . . . . . . . . . . . . . . . . . . . . . degrees
�T maximal difference temperature, (Th − Tc) . . . . K
�θ step of isotherms
�ψ step of streamlines
εi emissivity of surface Ai

ν kinematic viscosity of the fluid . . . . . . . . . . m2·s−1

ρo density of the fluid at To . . . . . . . . . . . . . . . kg·m−3

Θ dimensionless temperature, T/Th

θ dimensionless temperature, (T − Tc)/�T

σ Stefan–Boltzmann constant . . . . . . . . W·K−4·m−2

Subscripts

c cold
f fluid
h hot
ib inner body
nb cavity without an inner body
s solid
w walls of the cavity
wb cavity with an inner body
ing the discrete ordinates method (DOM) to solve the radiative
transfer equation. Both transparent and participating media are
discussed, and the effects of Planck and Rayleigh numbers, as
well as the optical thickness, are studied.

In the case of partitioned cavities, there are few studies on
the coupled heat transfer problem involving both convection
and radiation. However, it is well known that when natural con-
vection in air is involved, the heat transfer by natural convection
and radiation are usually of the same order of magnitude. Early
investigations of the combined natural convection-surface ra-
diation in a partitioned cavity have been carried out by Chang
et al. [20] who treated the radiation natural convection interac-
tion phenomena in square enclosures with equal vertical finite-
thickness partitions located at the centres of the ceiling and
floor. Both surface and gas radiation effects were examined. It is
shown that the predominant mechanism by which the radiation
process enhances the overall heat transfer rates is the surface ra-
diation. Nakamura and Asako [21] conducted a numerical and
experimental study on the effect of a partition, which has zero
thickness and located vertically at the midpoint of the differ-
entially heated cavity. It was found that the emissivities of the
top and bottom walls only slightly affect the heat transfer by
convection in both cases of conductive and insulated top and
bottom walls. On the other hand, the emissivities of the cold and
hot walls and of the partition were shown to considerably mod-
ify the convective heat transfer. Mezrhab and Bchir [22] studied
the effects of adding a thick partition located vertically close to
the hot wall of a differentially heated square cavity, forming a
narrow vertical channel in which the flow is controlled by vents
at the bottom and the top of the partition. It is shown that ra-
diation has a significant influence on the flow and heat transfer
in the channel. Recently, Han et al. [23] numerically studied
natural convection of a radiating fluid in a rectangular enclo-
sure, with two incomplete adiabatic thin partitions (one on the
top and the other at the bottom) under a large temperature dif-
ference. They have used the finite-volume method (FVM) to
solve the radiative transport equation, and have found that the
radiation alters significantly the flow patterns and the thermal
distributions. In addition, the surface radiation was dominant
over the gas radiation and the results were affected by the baf-
fle configuration. Finally, Mezrhab et al. [24,25] presented a
numerical study, based on a finite volume method and a bound-
ary element approximation, of the radiation-natural convection
interactions in a differentially heated square enclosure, within
which a centred, squared, heat-conducting body generates heat.
They found that the streamlines and isotherms structures in the
enclosure are strongly affected by the thermal radiation heat
transfer. Moreover, this one increases considerably the total
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heat transfer in the enclosure, and allows a good cooling of the
body that generates heat.

The main purpose of this paper is the analysis of radiation-
natural convection interactions in a differentially heated rectan-
gular cavity containing a centred conducting body. In compar-
ison to the previous studies achieved on the partitioned cavity,
our contribution lies in the fact that the enclosure is of an aspect
ratio equal to 2 and it is inclined by an angle φ with respect
to the horizontal. In addition a complete parametric study is
made for different inclination angles, conductivities of the body,
Rayleigh numbers, and emissivities of walls when taking into
account the radiation heat transfer.

2. Mathematical formulation and computational
procedure

The studied geometry is shown in Fig. 1. The flow is as-
sumed to be incompressible, laminar and two-dimensional in
a rectangular enclosure with an aspect ratio A = 2, the hori-
zontal end walls are perfectly insulated while the two vertical
walls are maintained at two different temperatures Th and Tc

respectively. The working fluid is air with physical properties,
except the density, constant at the average temperature To. In-
deed, it is the buoyancy force generated by the density gradient
that is responsible of the fluid motion inside the enclosure. The
radiative surfaces of the enclosure and the body are assumed
diffuse-gray.

The governing equations are non-dimensionalized using the
following definitions of the dimensionless variables:

X = x/b, Y = y/b

U = ub/α, V = vb/α

θ = (T − Tc)/(Th − Tc), P = (p + ρogy)b2/ρoα
2

Then the dimensionless governing equations for the present
system can be expressed by the following steady, two-dimen-
sional equations:

Fig. 1. Geometry of the inclined cavity.
Continuity:
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Energy:
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∂2θ

∂X2
+ ∂2θ

∂Y 2

)
(4)

λ and Rk are equal to 1 in the fluid region and λ = ∞, Rk =
kib/kf in the inner body.

Hot and cold walls are maintained at dimensionless tempera-
ture of 1 and 0, respectively. For the velocity field, the boundary
conditions are the no-slip type. The inclination angle φ is taken
positive in the clockwise direction.

The numerical solution of the governing differential equa-
tions for the velocity, pressure and temperature fields is ob-
tained by using a finite volume technique. The latter utilizes
a second-order central difference scheme (CDS) for the con-
vective terms in order to reduce numerical diffusion errors.
In the range of Rayleigh numbers investigated, the CDS solu-
tion did not exhibit spurious oscillations and the convergence
was achieved by using small under-relaxation factors on U , V

and θ . The simpler algorithm (semi-implicit method for pres-
sure linked equations revised) described in detail by Patankar
[26] is employed to solve the coupling between pressure and ve-
locity. The governing equations were cast in transient form and
a fully implicit transient differencing scheme was employed as
an iterative procedure to reach a steady state. The presence of
an inner body was accounted for by the strategy in which a re-
gion of high viscosity characterizes it.

The discretized equations obtained are solved iteratively by
an algorithm based on a preconditioned conjugate gradient
method. The solution is considered to be fully convergent when
the steady state is achieved, i.e. in this study when the max-
imum absolute value of (ϕ(n+1) − ϕ(n)) is smaller than 10−6

where ϕ is a dependent variable that represent U , V or θ , and
n is the iteration number (i.e. false time step). For the pressure
correction equation, which is a discretized Poisson equation,
the iterative process was stopped when the maximum residual
of mass (amount by which the continuity equation was not sat-
isfied) was less than 10−8.

For the radiative heat transfer problem, the working fluid
(air) is considered to be perfectly transparent. Thus, the air does
not participate in the radiative heat transfer, and only the solid
surfaces contribute to the radiation exchange. These surfaces
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are assumed to be diffuse-gray. In this case, indeed, one knows
that the radiative transfers appear in the heat balance of the sys-
tem only on the level of the boundary conditions. Thus, after
having established the boundary conditions, which describe the
radiative exchanges between surfaces, the problem is to eval-
uate the radiative heat flux, which comes in the expression of
the assessment of energy at the border of the solid node. The
enclosure walls and the inner body boundaries are divided into
finite number of zones on which the four basic assumptions of
the simplified zone analysis were assumed valid. The number
of zones retained was determined by the mesh used to solve
the differential equations. Indeed, the grid was constructed such
that the boundaries of physical domain coincided with the ve-
locity grid lines. The points for pressure and temperature were
placed at the center of the scalar volumes. At the fluid–solid
interfaces, the control volume faces were also arranged so that
a control volume face coincided with an interface solid–fluid.
Therefore, the zoning was not uniform and the area of each zone
varied according to the stretching function and number of grid
points used. This grid distribution was chosen to ensure the in-
terface energy balance. To avoid a checkerboard pressure and
velocity field a staggered grid for velocity is used.

Determination of the net radiative flux density requires
the knowledge of the surface temperature of each node. The
equation of the thermal balance of each surface provides us
with these temperatures. Thus, one assumes that the solid sur-
faces are in thermal equilibrium under the combined action of
the conductive, convective and radiative contributions, which
give:

ks

∂Ts

∂z
= kf

∂T

∂z
− qr (5)

where z denotes the normal direction to the interface under
consideration and qr the net radiative flux density along this
interface. In dimensionless form and with using the dimension-
less variable (Z = z/b), Eq. (5) can be written:

Rk

∂θs

∂Z
= ∂θ

∂Z
− NrQr (6)

For the insulated walls, Z ≡ Y and Eq. (6) becomes:

∂θ

∂Y
− Nr Qr = 0 (7)

In order to discretize Eqs. (6) and (7), the radiative sur-
faces of the solid forming the enclosure and the inner body
are divided into a number of surfaces Ai , i = 1,N . N is
the number of total radiative surfaces forming the cavity
and the inner body boundaries, which are equal to the to-
tal control volume interfaces solid–air. The surface temper-
atures were updated from the solution of the energy equa-
tion by under-relaxing the boundary evaluation of tempera-
ture.

Therefore, the dimensionless net radiative flux density along
a diffuse-gray and opaque surface “Ai” is expressed as:

Qr,i = Ri −
N∑

RjFi−j (8)

j=1
For N radiative surfaces, this results in N(N − 1)/2 view fac-
tors Fi−j to be calculated and in a linear system of N equations
for the radiosities. The view factors were determined by using a
boundary element approximation to fit the surfaces and a Monte
Carlo method for the numerical integrations [27].

Ri is the dimensionless radiosity of surface Ai , obtained by
resolving the following system:

N∑
j=1

(
δij − (1 − εi)Fi−j

)
Rj = εiΘ

4
i (9)

with δij the Kronecker symbol.
The average Nusselt number along the hot wall is defined as:

Nuw = 1

A

A∫
0

(
− ∂θ

∂X

∣∣∣∣
0,Y

+ NrQr(0, Y )

)
dY (10)

3. Grid size sensitivity test

Geometry studied in this paper is an obstructed cavity; there-
fore several grid size sensitivity tests were conducted in this
geometry to determine the adequacy of the mesh scheme and
to ensure that the solutions are grid independent. This is ob-
tained when numerical results of the average Nusselt number
Nuw become grid size independent, although we continue the
refinement of the mesh grid.

As can be seen in Table 1, six non-uniform grid sizes were
considered. Since the enclosure contains an inner body, its com-
putational domain is divided into three parts in the Y direction
and three parts in the X direction. In the Y direction, the first
part represents the region that is downstream of the inner body,
the second part coincides with the inner body height, and the
third part is the region upstream of the inner body. In the X di-
rection, the first part is located between the hot wall and the left
boundary of the inner body, the middle part coincides with the
inner body width, and the last part is the region separating the
right boundary of the inner body and the cold wall. The number
of control volumes used in each part is presented in parentheses
(for the X-direction, the data in parentheses are ordered from
the left to the right of the enclosure and for the Y -direction, they
are ordered from the downstream to the upstream of the enclo-
sure). For example, for the first grid given in Table 1, 6 × 14
control volumes are used for the inner body.

As is shown in Table 1, a 42 × 48 control volumes can be
chosen to optimize the relation between the accuracy required

Table 1
Grid sensitivity test (pure natural convection case: ε = 0),
Ra = 5 × 104 and Pr = 10

X-direction Y -direction Nuw

22(8, 6, 8) 26(6, 14, 6) 3.263
28(10, 8, 10) 32(8, 16, 8) 3.294
34(12, 10, 12) 38(10, 18, 10) 3.311
42(18, 6, 18) 48(8, 32, 8) 3.319
52(18, 16, 18) 56(16, 24, 16) 3.334
58(20, 18, 20) 60(18, 26, 16) 3.335
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Fig. 2. Isotherms and streamlines for Pr = 10.
and the computing time. Indeed, the maximum difference be-
tween the values of Nuw obtained for the 42 × 48 grid and the
finest 58 × 60 grid was less than 0.5%.

The mathematical model developed in the last section was
used to investigate the mutual interaction radiation-natural con-
vection in an inclined enclosure.

4. Code validation

The code was extensively exercised on benchmark problems
to check its validity. We recall here some results obtained by our
code in comparison with those reported in Ref. [9] for φ = 0◦,
45◦ and two values of Rk = 1 and 100 (see Figs. 3, 4, 5 and 6
in Ref. [9]).

Firstly, the code validation was achieved for isotherms and
streamlines patterns, in inclined and vertical cavities. As in
Ref. [9] we consider two different Rayleigh numbers (Ra =
5 × 104 and Ra = 5 × 106). Isotherms and streamlines pre-
sented in Fig. 2 can be favourably graphically compared with
those presented in Ref. [9] by studying the same problem and
by taking the same values for the parameters that are used. Sec-
ondly, we have compared results of the inclination angle effect
on the average Nusselt number as a function of the thermal con-
ductivity ratio Rk for Ra = 5 × 104, obtained by our code (see
Fig. 3) with those presented in Fig. 10 of Ref. [9]. There also,
we obtained an excellent agreement.
Fig. 3. Relation between Rk and average Nusselt number Nuw for Pr = 10 and
Ra = 5 × 104.

When the radiation exchange is taken into account, the pre-
sented numerical study was checked for accuracy against the
numerical results earlier published and reported by different au-
thors, and the agreement between the present and the previous
results was very good as indicated in Ref. [25]. In this paper, we
limit ourselves to compare our results with those obtained by
Chang et al. [20]. The enclosure geometry treated in Ref. [20] is
shown in Fig. 4. The enclosure is a square differentially heated
with identical vertical finite thickness partitions located at the
centers of the ceiling and floor. The vertical walls are main-
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Fig. 4. Geometry considered for the code validation.

Fig. 5. Average Nusselt number Nuw versus d/L for Ra = 4493300 and
562520.

tained isothermal with Th > Tc while the horizontal walls and
the partitions are assumed to be adiabatic. All radiative sur-
faces are considered as black. The width w of the partitions
is equal to L/10 (L is the height of the enclosure). Tempera-
tures of the cold and hot walls are respectively Tc = 277.8 K
and Th = 833.4 K. We present in Fig. 5, the average Nusselt
number Nuw for various dimensionless partition heights (d/L)

and for two Rayleigh numbers Ra = 4493300 and 562520. This
figure can be favourably graphically compared with curves cor-
responding to the case of air-surface radiation displayed respec-
tively in Fig. 7 for Ra = 4493300 and in Fig. 8 for Ra = 562520
in Ref. [20].

Based on the above studies, it was concluded that the code
could be reliably applied to the considered problem.

5. Results and discussion

In this investigation, both cases of pure natural convection
and natural convection coupled with surface radiation are pre-
sented. Each case required the specification of four dimen-
sionless parameters (ε,φ,�T ,Rk); the others parameters such
as Prandtl number, average temperature, cavity width, inner
body height, inner body width, and cavity aspect ratio are re-
spectively held fixed to Pr = 0.70, To = 300 K, b = 0.03 m,
Li = 0.8L, bi = 0.4b, and A = 2.
5.1. Results without radiation (ε = 0)

In this case there is no heat transfer by radiation (ε = 0).
Therefore, we treat the effect of the three parameters (φ,�T ,

Rk) on the pure natural convection heat transfer in inclined cav-
ity. For this reason we fix two parameters to study the effect of
the remaining one.

5.1.1. Effect of φ

The effect of the inclination angle φ is investigated with the
following parameters: maximal difference temperature, �T =
30 K and thermal conductivity ratio, Rk = 1. The Rayleigh
number deduced from the value of �T = 30 K is Ra =
7.5 × 104. Fig. 6 shows the effect of φ (φ chosen here are 60,
0 and −60 degrees) on the computed isotherms and streamlines
structures. For a purpose of comparison, the case of an empty
cavity is also presented.

In each case, the flow circulates in the clockwise direction
owing to the position of hot and cold walls. Indeed, the flow
rises along the hot wall and descends along the cold one. The
angle of tilt φ has a dramatic influence on the flow housed by
the enclosure.

At φ = 60◦, the isotherms in the inner body are nearly per-
pendicular to the gravitation, which yields the heat to be trans-
ferred in parallel with the gravitation through the inner body.
These isotherm structures are quite similar to those obtained
in the case of an empty cavity. In fact, at φ = 60◦ the convec-
tion currents are weak and conduction is the predominant mode
of heat transfer, so since the inner body has the same thermal
conductivity as the air (Rk = 1), its effect on the isotherms is
almost negligible. As for the streamlines, the presence of the
inner body has a slight effect on the flow structures. This is be-
cause the inner body is located at the central region of the cavity
which is nearly stagnant for φ = 60◦.

For both cases (wb and nb), Fig. 6 suggests that as φ de-
creases from 60◦ to 0◦ or −60◦, the heat transfer mechanism
switches from a conduction mode to single-cell convection at
φ = 0◦ and to a mode nearer to the Bénard convection at φ =
−60◦. The inner body modifies much the temperature fields. In-
deed, at φ = 0◦, the isotherms which are nearly horizontal in the
empty cavity become inclined in a partitioned cavity; whereas
at φ = −60◦, they change from inclined in the empty cavity to
horizontal in the partitioned one. At φ = 0◦, as well as in the
case φ = 60◦, the inner body has a slight effect on the stream-
lines because the region that it occupies is nearly stagnant even
in the empty cavity. However, at φ = −60◦, the stronger con-
vective motion developed in the central region of the empty
cavity is prevented by the inner body in the case of the parti-
tioned cavity.

Now, if we focus attention upon the effect of the inclination
angle φ on the conduction heat transfer in the inner body, the
isotherm structures in it reveal that at high φ (φ = 60◦) the heat
is transferred from the left surface of the inner body (facing the
cavity hot wall) to the right one (facing the cavity cold wall),
while at low values of φ the heat is transferred through the in-
ner body from its top to its bottom boundary. This is due to
the closeness of the temperatures of the inner body boundaries
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Fig. 6. Isotherms and streamlines for Ra = 7.5 × 104, Rk = 1, �θ = 0.1 and �ψ = 1.
facing hot and cold cavity walls when φ is weak as shown in
Fig. 7.

The variation of the local Nusselt number on the hot wall
φ (−60◦, 0◦ and 60◦), is shown in Fig. 8(a) for a partitioned
cavity and in Fig. 8(b) for an empty one. It can be seen that
the decrease of φ from 60◦ to 0◦ or −60◦ enhances largely
Nuwb(Y ). This enhancement is more important near the bottom
hot wall. Indeed, at low values of φ, the circulation induced by
the buoyancy force is important as shown in Fig. 6. This means
an increase of the mass flow rate through the opening bounded
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Fig. 7. Inclination angle effect on the temperatures of the vertical walls of the
inner body for Rk = 1 and Ra = 7.5 × 104. (X = 0.3: left wall and X = 0.7:
right wall.)

Fig. 8. Local Nusselt number on the hot wall for Rk = 1 and Ra = 7.5 × 104.

by the inner body and the insulated walls, and therefore a large
quantity of cold air can lick the hot wall at low φ. A slight dif-
ference between Nuwb(Y ) at φ = 0◦ and −60◦ is noted.

At φ = 60◦, the pattern of Nunb(Y ) (Fig. 8(b)) is quite simi-
lar to the one of Nuwb(Y ) (Fig. 8(a)), which explains again the
resemblance of the isotherms obtained for the two cavities (wb
and nb) at φ = 60◦. Nunb(Y ) is largely enhanced with decreas-
ing φ from 60◦ to 0◦ or −60◦. This is explained one more time
by the circulation that becomes stronger at low values of φ.
Nunb(Y ) is almost the same for φ = −60◦ and φ = 0◦, except
near the bottom hot wall where we note a slight increase of
Nunb(Y ) obtained for φ = 0◦ with respect to the one corre-
sponding to φ = −60◦. This is because in this region the air
is warmer for φ = −60◦ than for φ = 0◦ as shown in Fig. 6(b).

Local Nusselt number structures cannot provide us with an
exact idea on the effects of inclination angle φ and presence
of inner body on total heat transfer inside the enclosure, so we
judged useful the survey of the average Nusselt number.

Fig. 9 shows the average Nusselt number Nuw as a function
of the inclination angle φ for a partitioned (wb) and an empty
cavity (nb) for a Rayleigh number Ra = 7.5 × 104.

The influence of the inner body is clearly seen for inclina-
tion angles φ greater than −30◦ by a pronounced decrease in
the average Nusselt number with respect to the empty cavity.
This decrease is nearly the same for φ ranged between −15◦
and 60◦. It is also seen that both the average Nusselt numbers
Nuwwb and Nuwnb decrease when φ is increased from −30◦ to
60◦. As a matter of fact, the above discussions explain the be-
haviour of the average Nusselt number (shown in Fig. 9).

5.1.2. Effect of �T

Table 2 shows the average Nusselt number Nuw for three
values of maximal difference temperature �T . The inclination
angle and the thermal conductivity ratio were fixed at φ = −30◦
and Rk = 1, respectively. To respect the Boussinesq approxima-
tion, the maximal value of �T is taken equal to 30 K.

The average Nusselt number increases with increasing �T .
In fact, the buoyancy force increases with �T . This causes an
increase in the mass flow rate between the hot and cold parts of
the cavity. Thus, the cold air coming from the cold part of the

Fig. 9. Average Nusselt number Nuw versus the inclination angle φ at
Ra = 7.5 × 104.
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Fig. 10. Isotherms and streamlines for Ra = 7.5 × 104, φ = −30◦ , �θ = 0.1 and �ψ = 1.
Table 2
Average Nusselt number versus �T for Rk = 1, Pr = 0.71 and φ = −30◦

�T [K] Ra Nuwwb Nuwnb

5 1.25 × 104 1.99 2.63
20 5 × 104 3.56 3.73
30 7.5 × 104 4.08 4.13

cavity is pushed closer to the hot wall, so the local Nusselt num-
ber is enhanced along the hot wall. This means an increase in
the average Nusselt number. Notice, however, that the increase
of �T from 5 to 30 produces an increase in the average Nusselt
numbers Nuwb and Nunb by about 51% and 36%, respectively.
Indeed, at high values of �T , the resistance of the inner body
to the flow tends to become negligible than at lower values of
�T because the boundary layers become thinner and the cen-
tral core of the fluid region becomes relatively stagnant as �T

increases.

5.1.3. Effect of Rk

Fig. 10 shows isotherms and streamlines distributions for
two extreme values of Rk (0.1 and 104) at Ra = 7.5 × 104

and φ = −30◦. We note that the thermal conductivity of the
inner body affects strongly the isotherm structures. At large
Rk (Rk = 104), the isotherms move out of the inner body: the
inner body has a homogeneous temperature, due to its higher
conductivity. This temperature is nearly equal to the average
temperature To of the hot and cold walls. As a result, when Rk

increases from 0.1 to 104, the temperature of the bottom part of
the inner body increases while the temperature of its top part de-
creases. Hence, the air temperature becomes higher in the lower
passage and weaker in the upper passage. Thus, the hot fluid cir-
culating in the upper passage transfers an important portion of
its sensible heat through the inner body to the cold fluid circu-
lating in the lower passage instead of transporting it the whole
path toward the cold wall of the cavity. In this way, the high
thermal conductivity of the inner body reduces the overall heat
transfer by natural convection between the hot and cold walls of
the cavity. The streamlines obtained for Rk = 0.1 and 104 are
quite similar with a slight increase in the value of the maximum
stream function in the case of Rk = 104.

At Ra = 7.5×104, the relation between Nuw and Rk for dif-
ferent inclination angles φ is shown in Fig. 11. As can be seen,
Fig. 11. Relation between Rk and average Nusselt number Nuw for
Ra = 7.5 × 104.

Nuw decreases with increasing Rk for φ � 30◦ and, particu-
larly, a significant decrease can be seen at Rk ranged between
0.1 and 102. This implies that the suppression effect of the in-
ner body on heat transfer becomes larger as Rk increases for
φ � 30◦. However, for φ � 45◦, Nuw increases with increas-
ing Rk , and especially for Rk ranged between 0.1 and 10 where
a remarkable increase can be noted. This implies that the en-
hancement effect of the inner body on the heat transfer becomes
important for 0.1 � Rk � 10 and φ � 45◦. On the other hand,
independently of the value of φ, Nuw is nearly constant when
Rk exceeds 102.

5.2. Results accounting for radiation (ε �= 0)

The computations were carried out for the same parameters
studied in the case without radiation, in addition to the parame-
ter ε characterising the radiation heat flux. Thus the effects of
the following parameters (ε,φ,�T ,Rk) are considered.

5.2.1. Effect of ε

Average hot wall Nusselt number Nuw is plotted in Fig. 12
as a function of the inner body surface emissivity εib, with the
cavity walls surface emissivity εw as a parameter. The numer-
ical results are obtained for the following parameters: φ = 0◦,
�T = 30 K, Nr = 21.14 and Rk = 1.
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Fig. 12. Average hot wall Nusselt number as a function of the inner body emis-
sivity εib for φ = 0◦ , �T = 30 K and Rk = 1.

In all cases, the average Nusselt number increases with in-
creasing εw . To reduce the total heat transfer rate, surfaces with
low emissivities are required for the walls of the cavity and
the inner body. At lower values of the cavity walls emissivity
(εw = 0.1), the average Nusselt number for a cavity with an in-
ner body Nuwb is insensitive to εib and is slightly lower than
Nunb corresponding to the same value of εw . As εw increases,
Nuwb becomes larger and increases with increasing εib. The rate
of increase in the value of Nuwb with εib is more important as
εw approaches its maximum value (εw = 1).

From the curves pattern, it is clearly shown that the emissiv-
ity εw affects considerably the average Nusselt number. Fur-
thermore, the average Nusselt number Nunb at εw = 0.5 is
equal to the higher value that can be achieved by Nuwb (i.e. at
(εib, εw) = (1,1)). Thus, since the effect of εw on Nunb is more
important than that on Nuwb, this yields to a rapid increase in the
value of Nunb with εw if compared with the response of Nuwb

to the increase of εw . This can be attributed to the fact that the
inner body acts as an obstacle with regard to the radiative heat
coming from the hot wall.

In the following paragraphs, εib and εw are equal and are
simply noted ε.

Fig. 13 shows the variation of the local Nusselt number
Nu(Y ) along the hot wall in presence and in absence of the
thermal radiation for a partitioned and an empty cavity. In fact,
Fig. 13 brings an explanation to the variation of the average
Nusselt number Nuw, presented in Fig. 12. It is clearly shown
in Fig. 13, that the thermal radiation produces a large increase
of Nu(Y ); particularly in the empty cavity. Notice, however, that
the inner body reduces considerably Nu(Y ) because it obstructs
the radiative heat flux emitted by the hot cavity wall. Conse-
quently, the net radiative heat flux at the hot wall, Qr (which is
counted in Nuw) is lower in the case of a partitioned cavity than
in the case of an empty one.

5.2.2. Effect of φ

Isotherms and streamlines patterns in both cases wb and nb,
for three inclination angles φ of 60, 0 and −60 degrees are plot-
ted in Fig. 14. The same parameters are used as in the pure
Fig. 13. Local Nusselt number on the hot wall for φ = 0◦ , Rk = 1 and
Ra = 7.5 × 104.

natural convection case (Fig. 6) in an attempt to show the ef-
fect of the thermal radiation heat flux on the isotherms and
streamlines. The inclinations of isotherms near the insulated
walls and near the inner body boundaries are due to the im-
portance of the radiative heat fluxes exchanged between the
radiative surfaces. From the temperature contours, it appears
that the radiation heat transfer produces a good standardization
of temperature in each part of the cavity. This is attributed to
the fact that the radiation heat transfer reduces the tempera-
ture difference between the radiative surfaces located in each
part of the cavity as shown in Fig. 15 for the vertical sur-
faces of the inner body and the isothermal walls. Indeed, the
temperature of the vertical left surface of the inner body in-
creases under the radiation effects of the hot wall; whereas the
temperature of the vertical right surface of the inner body de-
creases because it emits radiation toward the cold wall. Thus a
channel is generated between the hot wall and the inner body
and another is generated between the cold wall and the inner
body.

Concerning the streamlines, as the case of pure natural con-
vection (see Fig. 6) and for two kinds of cavities (wb and nb),
the increase of the inclination angle φ reduces largely the ve-
locity of the flow in the cavity as shown in the streamline struc-
tures, especially for positive values of φ. On the other hand, the
radiation heat transfer increases the air circulation in the cavity.
This is due to the increase in difference between the average air
temperatures in the left and right part of cavity under the radia-
tion effect.

The effects of inclination angle on local Nusselt number
distribution on the hot wall Nu(Y ), for partitioned and empty
cavities are presented in Fig. 16. As in the pure natural convec-
tion case (Fig. 8), the local Nusselt number Nu(Y ) obtained for
φ = 60◦ is lower than those corresponding to φ = 0◦ or −60◦.
We also note that the radiation exchange increase considerably
Nu(Y ) for all values of φ. This increase is more pronounced in
the case of the empty cavity than in the case of the partitioned
one owing to the shadow effect to the radiation produced by the
inner body in the last case. Therefore, as shown in Fig. 17, the
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Fig. 14. Isotherms and streamlines for Rk = 1, Ra = 7.5 × 104, Nr = 21.14, ε = 1, �θ = 0.1 and �ψ = 1.
variation of average Nusselt number Nuw according to φ is the
same as in pure natural convection, but the radiation heat trans-
fer produces an important increase of Nuw, particularly in the
case of the empty cavity.
5.2.3. Effect of �T

The effect of temperature difference �T is investigated for
φ = −30◦, Rk = 1 and ε = 1.

Three values of �T (5 K, 20 K, and 30 K) as in the pure
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Fig. 15. Radiation effect on walls temperature distribution at φ = −60◦ , Rk = 1
and Ra = 7.5 × 104.

Fig. 16. Local Nusselt number on the hot wall for Rk = 1, Ra = 7.5 × 104,
Nr = 21.14 and ε = 1.

Fig. 17. Average hot wall Nusselt number Nuw as a function of the inclination
angle φ for Ra = 7.5 × 104, Nr = 21.14 and ε = 1.

Table 3
Average hot wall Nusselt numbers versus �T for Rk = 1, φ = −30◦ and ε = 1

�T [K] Ra Nuwb Nunb

5 1.25 × 104 3.45 8.04
20 5 × 104 5.68 9.08
30 7.5 × 104 6.36 9.40

natural convection case are chosen to show the effect of the
radiation heat transfer on Nuw. Table 3 shows that for both cases
(nb and wb), Nuw increases with increasing �T and under the
radiation heat transfer effect. In fact, the increase of �T causes
an increase in both the buoyancy force and the radiation number
Nr, which produce in their turn an increase in the convective
and radiative contributions in Nuw, respectively. The shadow
effect caused by the inner body to the thermal radiation explains
one more time the fact that Nunb is greater than Nuwb.

5.2.4. Effect of Rk

Fig. 18 presents the isotherms and streamlines for �T =
30 K (Ra = 7.5 × 104), φ = −30◦, ε = 1 and two values of
Rk (0.1 and 104). As in pure natural convection case (ε = 0), at
large Rk (Rk = 104) the inner body has a homogeneous temper-
ature, which approaches the average temperature To. Thus, at
Rk = 104 the radiative surfaces temperatures of the inner body
are nearly equal to To; which explains that the radiation effect
is negligible on the isotherms and streamlines near the inner
body. Notice, however, that the influence of the radiation ex-
change on the isotherms near the horizontal walls of the cavity
is very obvious. For Rk = 0.1, two channels are generated under
the radiation effect, and the air flow is accelerated in compari-
son to the case of ε = 0. For both values of Rk , the streamline
patterns are quite similar to those obtained for ε = 0.

The average Nusselt number Nuw as a function of the ther-
mal conductivity ratio Rk for Ra = 7.5 × 104 and various in-
clination angles φ is presented in Fig. 19. The behaviour of the
curves presented in Fig. 19 is different from that seen in pure
natural convection case. This is valid for all values of φ, except
for φ � 45◦ (see Fig. 11). Indeed, for all values of φ, Nuw is
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Fig. 18. Isotherms and streamlines for Ra = 7.5 × 104, φ = −30◦ , Nr = 21.14, ε = 1, �θ = 0.1 and �ψ = 1.
Fig. 19. Relation between Rk and average Nusselt number Nuw for
Ra = 7.5 × 104, Nr = 21.14 and ε = 1.

largely enhanced by an increase of Rk from 10−1 to 102. For
Rk superior to 102, the variation of Nuw against Rk is negligi-
ble. Furthermore, the response of Nuw to the variation of Rk is
important as φ increases.

On the other hand, a comparison between Fig. 19 and Fig. 11
shows that the radiation exchange produces a net increase in the
average Nusselt number Nuw for all values of φ and Rk . This
increase is especially important at high value of Rk . In fact,
when Rk is high, the temperature of the inner body is uniform
and equal nearly to the average temperature To. Thus, the net
radiative flux along the hot wall and consequently Nuw are high.
However, when Rk is weak, the temperature of the vertical left
surface of the inner body is greater than To, so the net radiative
flux along the hot wall is less important than for a high value
of Rk .

6. Conclusion

The combined radiation-natural convection heat transfer in
an inclined partitioned enclosure has been investigated numer-
ically. Both cases: enclosure with or without inner body, have
been considered. The investigation shows results of the effects
of inclination angle φ, thermal conductivity ratio Rk , maximal
difference temperature �T in the presence and in the absence
of radiation heat transfer. The effect of the emissivities of radia-
tive surfaces was also investigated.
This study has shown the response of heat transfer, isotherms
and streamlines structures to the variations in the above men-
tioned parameters (φ,�T ,Rk), firstly in pure natural convec-
tion, and secondly when the radiative heat transfer is taken into
account.

Three principal conclusions can be drawn:

(1) For both cavities (wb and nb), and either in the pure nat-
ural convection (ε = 0) or in the combined mode (ε �= 0),
the inclination angle φ affects strongly the isotherm struc-
tures and the streamline values in the cavity. Concerning
the average Nusselt number, the effect of φ is important
only for its positive values. Indeed, Nuw decreases with in-
creasing φ for φ > 0◦, however, there is a little change in
Nuw against the negative φ values.

(2) Thermal conductivity ratio Rk affects the isotherm distri-
bution in inner body, thus it affects also isotherms in the
entire cavity. The effect of thermal conductivity ratio Rk on
the average Nusselt number Nuw depends upon the value
of the inclination angle φ. In the presence of the radia-
tion heat transfer and independently of φ, Nuw increases
with increasing Rk . However, in the absence of the radia-
tion heat transfer (ε = 0) and when Rk is varied from 0.1 to
102, Nuw increases for φ � 45◦ and decreases for φ � 30◦.
When Rk exceeds 102, its effect on Nuw is negligible.

(3) Radiation heat transfer increases considerably the average
Nusselt number, particularly in the absence of the inner
body. It also standardizes temperatures of radiative surfaces
in each part of the cavity, thus the structures of isotherms
are completely different from those obtained in pure natural
convection.
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